skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Charette, M A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The physical and biogeochemical properties of the western Arctic Ocean are rapidly changing, resulting in cascading shifts to the local ecosystems. The nutrient‐rich Pacific water inflow to the Arctic through the Bering Strait is modified on the Chukchi and East Siberian shelves by brine rejection during sea ice formation, resulting in a strong halocline (called the Upper Halocline Layer (UHL)) that separates the cold and relatively fresh surface layer from the warmer and more saline (and nutrient‐poor) Atlantic‐derived water below. Biogeochemical signals entrained into the UHL result from Pacific Waters modified by sediment and river influence on the shelf. In this synthesis, we bring together data from the 2015 Arctic U.S. GEOTRACES program to implement a multi‐tracer (dissolved and particulate trace elements, radioactive and stable isotopes, macronutrients, and dissolved gas/atmospheric tracers) approach to assess the relative influence of shelf sediments, rivers, and Pacific seawater contribution to the Amerasian Arctic halocline. For each element, we characterized their behavior as mixing dominated (e.g., dCu, dGa), shelf‐influenced (e.g., dFe, dZn), or a combination of both (e.g., dBa, dNi). Leveraging this framework, we assessed sources and sinks contributing to elemental distributions: shelf sediments (e.g., dFe, dZn, dCd, dHg), riverine sources, (e.g., dCu, dBa, dissolved organic carbon), and scavenging by particles originating on the shelf (e.g., dFe, dMn, dV, etc.). Additionally, synthesized results from isotopic and atmospheric tracers yielded tracer age estimates for the Upper Halocline ranging between 1 and 2 decades on a spatial gradient consistent with cyclonic circulation. 
    more » « less